Synthesis and high-pressure transformation of metastable wurtzite-structured CuGaS2 nanocrystals.

نویسندگان

  • Ningru Xiao
  • Li Zhu
  • Kai Wang
  • Quanqin Dai
  • Yingnan Wang
  • Shourui Li
  • Yongming Sui
  • Yanming Ma
  • Jing Liu
  • Bingbing Liu
  • Guangtian Zou
  • Bo Zou
چکیده

The metastable wurtzite nanocrystals of CuGaS(2) have been synthesized through a facile and effective one-pot solvothermal approach. Through the Rietveld refinement on experimental X-ray diffraction patterns, we have unambiguously determined the structural parameters and the disordered nature of this wurtzite phase. The metastability of wurtzite structure with respect to the stable chalcopyrite structure was testified by a precise theoretical total energy calculation. Subsequent high-pressure experiments were performed to establish the isothermal phase stability of this wurtzite phase in the pressure range of 0-15.9 GPa, above which another disordered rock salt phase crystallized and remained stable up to 30.3 GPa, the highest pressure studied. Upon release of pressure, the sample was irreversible and intriguingly converted into the energetically more favorable and ordered chalcopyrite structure as revealed by the synchrotron X-ray diffraction and the high-resolution transmission electron microscopic measurements. The observed phase transitions were rationalized by first-principles calculations. The current research surely establishes a novel phase transition sequence of disorder → disorder → order, where pressure has played a significant role in effectively tuning stabilities of these different phases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of ZnO Nanocrystals with Hexagonal (Wurtzite) Structure in Water Using Microwave Irradiation

Nanocrystals of ZnO were prepared by microwave irradiation using Zn (II) acetate and triethanol amin (TEA) as the starting materials and water as solvent. The nanocrystals of ZnO with hexagonal (Wurtzite) structure were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis absorption and FTIR Spectroscopy techniques.

متن کامل

Study on Structural and Optical Properties ‎of Wurtzite Cu2ZnSnS4 Nanocrystals ‎Synthesized via Solvothermal Method

   A simple low-cost solvothermal method was applied to synthesize hexagonal wurtzite Cu2ZnSnS4 (CZTS) nanoparticles with different morphologies using Polyvinylpyrrolidone (PVP) as a capping ligand and copper and zinc acetate salts at 180 and 220 ℃. The resulting sphere-like and flower-like nanoparticles synthesized at 180 and 220℃</...

متن کامل

Metastability in pressure-induced structural transformations of CdSe/ZnS core/shell nanocrystals.

The kinetics and thermodynamics of structural transformations under pressure depend strongly on particle size due to the influence of surface free energy. By suitable design of surface structure, composition, and passivation it is possible, in principle, to prepare nanocrystals in structures inaccessible to bulk materials. However, few realizations of such extreme size-dependent behavior exist....

متن کامل

Single source precursor driven phase selective synthesis of Au-CuGaS2 heteronanostructures: an observation of plasmon enhanced photocurrent efficiency.

The design of new functional metal-semiconductor heteronanostructures with improved photovoltaic efficiencies has drawn significant attention because of their unprecedented properties and potential applications. Herein, we report a phase selective synthesis of ternary CuGaS2 (wurtzite and tetragonal) by simple solution based thermal decomposition of a new binuclear single molecular precursor [G...

متن کامل

Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite

Bulk crystals of ZnS usually take the zinc blende structure. However, the vapor deposited one-dimensional ZnS nanostructures normally take the metastable wurtzite structure. This Letter investigates the conditions under which the formed phase can be controlled between zinc blende and wurtzite in nanomaterials synthesis. The formation of pure zinc blende structured ZnS nanobelts is related not o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 23  شماره 

صفحات  -

تاریخ انتشار 2012